3.11.77 \(\int \frac {\sqrt {x}}{(a+b x^2+c x^4)^2} \, dx\) [1077]

3.11.77.1 Optimal result
3.11.77.2 Mathematica [C] (verified)
3.11.77.3 Rubi [A] (verified)
3.11.77.4 Maple [C] (verified)
3.11.77.5 Fricas [B] (verification not implemented)
3.11.77.6 Sympy [F(-1)]
3.11.77.7 Maxima [F]
3.11.77.8 Giac [F]
3.11.77.9 Mupad [B] (verification not implemented)

3.11.77.1 Optimal result

Integrand size = 20, antiderivative size = 489 \[ \int \frac {\sqrt {x}}{\left (a+b x^2+c x^4\right )^2} \, dx=\frac {x^{3/2} \left (b^2-2 a c+b c x^2\right )}{2 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}+\frac {\sqrt [4]{c} \left (b-\frac {b^2-20 a c}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{4\ 2^{3/4} a \left (b^2-4 a c\right ) \sqrt [4]{-b-\sqrt {b^2-4 a c}}}+\frac {\sqrt [4]{c} \left (b+\frac {b^2-20 a c}{\sqrt {b^2-4 a c}}\right ) \arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{4\ 2^{3/4} a \left (b^2-4 a c\right ) \sqrt [4]{-b+\sqrt {b^2-4 a c}}}-\frac {\sqrt [4]{c} \left (b-\frac {b^2-20 a c}{\sqrt {b^2-4 a c}}\right ) \text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b-\sqrt {b^2-4 a c}}}\right )}{4\ 2^{3/4} a \left (b^2-4 a c\right ) \sqrt [4]{-b-\sqrt {b^2-4 a c}}}-\frac {\sqrt [4]{c} \left (b+\frac {b^2-20 a c}{\sqrt {b^2-4 a c}}\right ) \text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-b+\sqrt {b^2-4 a c}}}\right )}{4\ 2^{3/4} a \left (b^2-4 a c\right ) \sqrt [4]{-b+\sqrt {b^2-4 a c}}} \]

output
1/2*x^(3/2)*(b*c*x^2-2*a*c+b^2)/a/(-4*a*c+b^2)/(c*x^4+b*x^2+a)+1/8*c^(1/4) 
*arctan(2^(1/4)*c^(1/4)*x^(1/2)/(-b-(-4*a*c+b^2)^(1/2))^(1/4))*(b+(20*a*c- 
b^2)/(-4*a*c+b^2)^(1/2))*2^(1/4)/a/(-4*a*c+b^2)/(-b-(-4*a*c+b^2)^(1/2))^(1 
/4)-1/8*c^(1/4)*arctanh(2^(1/4)*c^(1/4)*x^(1/2)/(-b-(-4*a*c+b^2)^(1/2))^(1 
/4))*(b+(20*a*c-b^2)/(-4*a*c+b^2)^(1/2))*2^(1/4)/a/(-4*a*c+b^2)/(-b-(-4*a* 
c+b^2)^(1/2))^(1/4)+1/8*c^(1/4)*arctan(2^(1/4)*c^(1/4)*x^(1/2)/(-b+(-4*a*c 
+b^2)^(1/2))^(1/4))*(b+(-20*a*c+b^2)/(-4*a*c+b^2)^(1/2))*2^(1/4)/a/(-4*a*c 
+b^2)/(-b+(-4*a*c+b^2)^(1/2))^(1/4)-1/8*c^(1/4)*arctanh(2^(1/4)*c^(1/4)*x^ 
(1/2)/(-b+(-4*a*c+b^2)^(1/2))^(1/4))*(b+(-20*a*c+b^2)/(-4*a*c+b^2)^(1/2))* 
2^(1/4)/a/(-4*a*c+b^2)/(-b+(-4*a*c+b^2)^(1/2))^(1/4)
 
3.11.77.2 Mathematica [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3 in optimal.

Time = 0.24 (sec) , antiderivative size = 136, normalized size of antiderivative = 0.28 \[ \int \frac {\sqrt {x}}{\left (a+b x^2+c x^4\right )^2} \, dx=-\frac {\frac {4 x^{3/2} \left (b^2-2 a c+b c x^2\right )}{a+b x^2+c x^4}+\text {RootSum}\left [a+b \text {$\#$1}^4+c \text {$\#$1}^8\&,\frac {b^2 \log \left (\sqrt {x}-\text {$\#$1}\right )-10 a c \log \left (\sqrt {x}-\text {$\#$1}\right )+b c \log \left (\sqrt {x}-\text {$\#$1}\right ) \text {$\#$1}^4}{b \text {$\#$1}+2 c \text {$\#$1}^5}\&\right ]}{8 a \left (-b^2+4 a c\right )} \]

input
Integrate[Sqrt[x]/(a + b*x^2 + c*x^4)^2,x]
 
output
-1/8*((4*x^(3/2)*(b^2 - 2*a*c + b*c*x^2))/(a + b*x^2 + c*x^4) + RootSum[a 
+ b*#1^4 + c*#1^8 & , (b^2*Log[Sqrt[x] - #1] - 10*a*c*Log[Sqrt[x] - #1] + 
b*c*Log[Sqrt[x] - #1]*#1^4)/(b*#1 + 2*c*#1^5) & ])/(a*(-b^2 + 4*a*c))
 
3.11.77.3 Rubi [A] (verified)

Time = 0.65 (sec) , antiderivative size = 416, normalized size of antiderivative = 0.85, number of steps used = 9, number of rules used = 8, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.400, Rules used = {1435, 1702, 25, 1834, 27, 827, 218, 221}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\sqrt {x}}{\left (a+b x^2+c x^4\right )^2} \, dx\)

\(\Big \downarrow \) 1435

\(\displaystyle 2 \int \frac {x}{\left (c x^4+b x^2+a\right )^2}d\sqrt {x}\)

\(\Big \downarrow \) 1702

\(\displaystyle 2 \left (\frac {x^{3/2} \left (-2 a c+b^2+b c x^2\right )}{4 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}-\frac {\int -\frac {x \left (b^2+c x^2 b-10 a c\right )}{c x^4+b x^2+a}d\sqrt {x}}{4 a \left (b^2-4 a c\right )}\right )\)

\(\Big \downarrow \) 25

\(\displaystyle 2 \left (\frac {\int \frac {x \left (b^2+c x^2 b-10 a c\right )}{c x^4+b x^2+a}d\sqrt {x}}{4 a \left (b^2-4 a c\right )}+\frac {x^{3/2} \left (-2 a c+b^2+b c x^2\right )}{4 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\right )\)

\(\Big \downarrow \) 1834

\(\displaystyle 2 \left (\frac {\frac {1}{2} c \left (\frac {b^2-20 a c}{\sqrt {b^2-4 a c}}+b\right ) \int \frac {2 x}{2 c x^2+b-\sqrt {b^2-4 a c}}d\sqrt {x}+\frac {1}{2} c \left (b-\frac {b^2-20 a c}{\sqrt {b^2-4 a c}}\right ) \int \frac {2 x}{2 c x^2+b+\sqrt {b^2-4 a c}}d\sqrt {x}}{4 a \left (b^2-4 a c\right )}+\frac {x^{3/2} \left (-2 a c+b^2+b c x^2\right )}{4 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\right )\)

\(\Big \downarrow \) 27

\(\displaystyle 2 \left (\frac {c \left (\frac {b^2-20 a c}{\sqrt {b^2-4 a c}}+b\right ) \int \frac {x}{2 c x^2+b-\sqrt {b^2-4 a c}}d\sqrt {x}+c \left (b-\frac {b^2-20 a c}{\sqrt {b^2-4 a c}}\right ) \int \frac {x}{2 c x^2+b+\sqrt {b^2-4 a c}}d\sqrt {x}}{4 a \left (b^2-4 a c\right )}+\frac {x^{3/2} \left (-2 a c+b^2+b c x^2\right )}{4 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\right )\)

\(\Big \downarrow \) 827

\(\displaystyle 2 \left (\frac {c \left (b-\frac {b^2-20 a c}{\sqrt {b^2-4 a c}}\right ) \left (\frac {\int \frac {1}{\sqrt {2} \sqrt {c} x+\sqrt {-b-\sqrt {b^2-4 a c}}}d\sqrt {x}}{2 \sqrt {2} \sqrt {c}}-\frac {\int \frac {1}{\sqrt {-b-\sqrt {b^2-4 a c}}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{2 \sqrt {2} \sqrt {c}}\right )+c \left (\frac {b^2-20 a c}{\sqrt {b^2-4 a c}}+b\right ) \left (\frac {\int \frac {1}{\sqrt {2} \sqrt {c} x+\sqrt {\sqrt {b^2-4 a c}-b}}d\sqrt {x}}{2 \sqrt {2} \sqrt {c}}-\frac {\int \frac {1}{\sqrt {\sqrt {b^2-4 a c}-b}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{2 \sqrt {2} \sqrt {c}}\right )}{4 a \left (b^2-4 a c\right )}+\frac {x^{3/2} \left (-2 a c+b^2+b c x^2\right )}{4 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\right )\)

\(\Big \downarrow \) 218

\(\displaystyle 2 \left (\frac {c \left (b-\frac {b^2-20 a c}{\sqrt {b^2-4 a c}}\right ) \left (\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt [4]{-\sqrt {b^2-4 a c}-b}}-\frac {\int \frac {1}{\sqrt {-b-\sqrt {b^2-4 a c}}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{2 \sqrt {2} \sqrt {c}}\right )+c \left (\frac {b^2-20 a c}{\sqrt {b^2-4 a c}}+b\right ) \left (\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt [4]{\sqrt {b^2-4 a c}-b}}-\frac {\int \frac {1}{\sqrt {\sqrt {b^2-4 a c}-b}-\sqrt {2} \sqrt {c} x}d\sqrt {x}}{2 \sqrt {2} \sqrt {c}}\right )}{4 a \left (b^2-4 a c\right )}+\frac {x^{3/2} \left (-2 a c+b^2+b c x^2\right )}{4 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\right )\)

\(\Big \downarrow \) 221

\(\displaystyle 2 \left (\frac {c \left (b-\frac {b^2-20 a c}{\sqrt {b^2-4 a c}}\right ) \left (\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt [4]{-\sqrt {b^2-4 a c}-b}}-\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt [4]{-\sqrt {b^2-4 a c}-b}}\right )+c \left (\frac {b^2-20 a c}{\sqrt {b^2-4 a c}}+b\right ) \left (\frac {\arctan \left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt [4]{\sqrt {b^2-4 a c}-b}}-\frac {\text {arctanh}\left (\frac {\sqrt [4]{2} \sqrt [4]{c} \sqrt {x}}{\sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{2\ 2^{3/4} c^{3/4} \sqrt [4]{\sqrt {b^2-4 a c}-b}}\right )}{4 a \left (b^2-4 a c\right )}+\frac {x^{3/2} \left (-2 a c+b^2+b c x^2\right )}{4 a \left (b^2-4 a c\right ) \left (a+b x^2+c x^4\right )}\right )\)

input
Int[Sqrt[x]/(a + b*x^2 + c*x^4)^2,x]
 
output
2*((x^(3/2)*(b^2 - 2*a*c + b*c*x^2))/(4*a*(b^2 - 4*a*c)*(a + b*x^2 + c*x^4 
)) + (c*(b - (b^2 - 20*a*c)/Sqrt[b^2 - 4*a*c])*(ArcTan[(2^(1/4)*c^(1/4)*Sq 
rt[x])/(-b - Sqrt[b^2 - 4*a*c])^(1/4)]/(2*2^(3/4)*c^(3/4)*(-b - Sqrt[b^2 - 
 4*a*c])^(1/4)) - ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b - Sqrt[b^2 - 4*a*c 
])^(1/4)]/(2*2^(3/4)*c^(3/4)*(-b - Sqrt[b^2 - 4*a*c])^(1/4))) + c*(b + (b^ 
2 - 20*a*c)/Sqrt[b^2 - 4*a*c])*(ArcTan[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqr 
t[b^2 - 4*a*c])^(1/4)]/(2*2^(3/4)*c^(3/4)*(-b + Sqrt[b^2 - 4*a*c])^(1/4)) 
- ArcTanh[(2^(1/4)*c^(1/4)*Sqrt[x])/(-b + Sqrt[b^2 - 4*a*c])^(1/4)]/(2*2^( 
3/4)*c^(3/4)*(-b + Sqrt[b^2 - 4*a*c])^(1/4))))/(4*a*(b^2 - 4*a*c)))
 

3.11.77.3.1 Defintions of rubi rules used

rule 25
Int[-(Fx_), x_Symbol] :> Simp[Identity[-1]   Int[Fx, x], x]
 

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 218
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[a/b, 2]/a)*ArcTan[x/R 
t[a/b, 2]], x] /; FreeQ[{a, b}, x] && PosQ[a/b]
 

rule 221
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-a/b, 2]/a)*ArcTanh[x 
/Rt[-a/b, 2]], x] /; FreeQ[{a, b}, x] && NegQ[a/b]
 

rule 827
Int[(x_)^2/((a_) + (b_.)*(x_)^4), x_Symbol] :> With[{r = Numerator[Rt[-a/b, 
 2]], s = Denominator[Rt[-a/b, 2]]}, Simp[s/(2*b)   Int[1/(r + s*x^2), x], 
x] - Simp[s/(2*b)   Int[1/(r - s*x^2), x], x]] /; FreeQ[{a, b}, x] &&  !GtQ 
[a/b, 0]
 

rule 1435
Int[((d_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^2 + (c_.)*(x_)^4)^(p_), x_Symbol] 
:> With[{k = Denominator[m]}, Simp[k/d   Subst[Int[x^(k*(m + 1) - 1)*(a + b 
*(x^(2*k)/d^2) + c*(x^(4*k)/d^4))^p, x], x, (d*x)^(1/k)], x]] /; FreeQ[{a, 
b, c, d, p}, x] && NeQ[b^2 - 4*a*c, 0] && FractionQ[m] && IntegerQ[p]
 

rule 1702
Int[((d_.)*(x_))^(m_.)*((a_) + (c_.)*(x_)^(n2_.) + (b_.)*(x_)^(n_))^(p_), x 
_Symbol] :> Simp[(-(d*x)^(m + 1))*(b^2 - 2*a*c + b*c*x^n)*((a + b*x^n + c*x 
^(2*n))^(p + 1)/(a*d*n*(p + 1)*(b^2 - 4*a*c))), x] + Simp[1/(a*n*(p + 1)*(b 
^2 - 4*a*c))   Int[(d*x)^m*(a + b*x^n + c*x^(2*n))^(p + 1)*Simp[b^2*(m + n* 
(p + 1) + 1) - 2*a*c*(m + 2*n*(p + 1) + 1) + b*c*(m + n*(2*p + 3) + 1)*x^n, 
 x], x], x] /; FreeQ[{a, b, c, d, m}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c 
, 0] && IGtQ[n, 0] && ILtQ[p, -1]
 

rule 1834
Int[(((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_)^(n_)))/((a_) + (b_.)*(x_)^(n_) + 
 (c_.)*(x_)^(n2_)), x_Symbol] :> With[{q = Rt[b^2 - 4*a*c, 2]}, Simp[(e/2 + 
 (2*c*d - b*e)/(2*q))   Int[(f*x)^m/(b/2 - q/2 + c*x^n), x], x] + Simp[(e/2 
 - (2*c*d - b*e)/(2*q))   Int[(f*x)^m/(b/2 + q/2 + c*x^n), x], x]] /; FreeQ 
[{a, b, c, d, e, f, m}, x] && EqQ[n2, 2*n] && NeQ[b^2 - 4*a*c, 0] && IGtQ[n 
, 0]
 
3.11.77.4 Maple [C] (verified)

Result contains higher order function than in optimal. Order 9 vs. order 3.

Time = 0.10 (sec) , antiderivative size = 149, normalized size of antiderivative = 0.30

method result size
derivativedivides \(\frac {-\frac {b c \,x^{\frac {7}{2}}}{2 a \left (4 a c -b^{2}\right )}+\frac {\left (2 a c -b^{2}\right ) x^{\frac {3}{2}}}{2 a \left (4 a c -b^{2}\right )}}{c \,x^{4}+b \,x^{2}+a}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{8}+\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\left (-b c \,\textit {\_R}^{6}+\left (10 a c -b^{2}\right ) \textit {\_R}^{2}\right ) \ln \left (\sqrt {x}-\textit {\_R} \right )}{2 \textit {\_R}^{7} c +\textit {\_R}^{3} b}}{8 a \left (4 a c -b^{2}\right )}\) \(149\)
default \(\frac {-\frac {b c \,x^{\frac {7}{2}}}{2 a \left (4 a c -b^{2}\right )}+\frac {\left (2 a c -b^{2}\right ) x^{\frac {3}{2}}}{2 a \left (4 a c -b^{2}\right )}}{c \,x^{4}+b \,x^{2}+a}+\frac {\munderset {\textit {\_R} =\operatorname {RootOf}\left (c \,\textit {\_Z}^{8}+\textit {\_Z}^{4} b +a \right )}{\sum }\frac {\left (-b c \,\textit {\_R}^{6}+\left (10 a c -b^{2}\right ) \textit {\_R}^{2}\right ) \ln \left (\sqrt {x}-\textit {\_R} \right )}{2 \textit {\_R}^{7} c +\textit {\_R}^{3} b}}{8 a \left (4 a c -b^{2}\right )}\) \(149\)

input
int(x^(1/2)/(c*x^4+b*x^2+a)^2,x,method=_RETURNVERBOSE)
 
output
2*(-1/4/a*b*c/(4*a*c-b^2)*x^(7/2)+1/4*(2*a*c-b^2)/a/(4*a*c-b^2)*x^(3/2))/( 
c*x^4+b*x^2+a)+1/8/a/(4*a*c-b^2)*sum((-b*c*_R^6+(10*a*c-b^2)*_R^2)/(2*_R^7 
*c+_R^3*b)*ln(x^(1/2)-_R),_R=RootOf(_Z^8*c+_Z^4*b+a))
 
3.11.77.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 13225 vs. \(2 (397) = 794\).

Time = 8.91 (sec) , antiderivative size = 13225, normalized size of antiderivative = 27.04 \[ \int \frac {\sqrt {x}}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Too large to display} \]

input
integrate(x^(1/2)/(c*x^4+b*x^2+a)^2,x, algorithm="fricas")
 
output
Too large to include
 
3.11.77.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\sqrt {x}}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Timed out} \]

input
integrate(x**(1/2)/(c*x**4+b*x**2+a)**2,x)
 
output
Timed out
 
3.11.77.7 Maxima [F]

\[ \int \frac {\sqrt {x}}{\left (a+b x^2+c x^4\right )^2} \, dx=\int { \frac {\sqrt {x}}{{\left (c x^{4} + b x^{2} + a\right )}^{2}} \,d x } \]

input
integrate(x^(1/2)/(c*x^4+b*x^2+a)^2,x, algorithm="maxima")
 
output
1/2*(b*c*x^(7/2) + (b^2 - 2*a*c)*x^(3/2))/((a*b^2*c - 4*a^2*c^2)*x^4 + a^2 
*b^2 - 4*a^3*c + (a*b^3 - 4*a^2*b*c)*x^2) - integrate(-1/4*(b*c*x^(5/2) + 
(b^2 - 10*a*c)*sqrt(x))/((a*b^2*c - 4*a^2*c^2)*x^4 + a^2*b^2 - 4*a^3*c + ( 
a*b^3 - 4*a^2*b*c)*x^2), x)
 
3.11.77.8 Giac [F]

\[ \int \frac {\sqrt {x}}{\left (a+b x^2+c x^4\right )^2} \, dx=\int { \frac {\sqrt {x}}{{\left (c x^{4} + b x^{2} + a\right )}^{2}} \,d x } \]

input
integrate(x^(1/2)/(c*x^4+b*x^2+a)^2,x, algorithm="giac")
 
output
integrate(sqrt(x)/(c*x^4 + b*x^2 + a)^2, x)
 
3.11.77.9 Mupad [B] (verification not implemented)

Time = 15.52 (sec) , antiderivative size = 26373, normalized size of antiderivative = 53.93 \[ \int \frac {\sqrt {x}}{\left (a+b x^2+c x^4\right )^2} \, dx=\text {Too large to display} \]

input
int(x^(1/2)/(a + b*x^2 + c*x^4)^2,x)
 
output
atan(((((2048*b^19*c^4 - 116736*a*b^17*c^5 - 10905190400*a^9*b*c^13 + 2852 
864*a^2*b^15*c^6 - 39247872*a^3*b^13*c^7 + 335708160*a^4*b^11*c^8 - 185742 
1312*a^5*b^9*c^9 + 6670516224*a^6*b^7*c^10 - 15042871296*a^7*b^5*c^11 + 19 
386073088*a^8*b^3*c^12)/(64*(a^2*b^14 - 16384*a^9*c^7 - 28*a^3*b^12*c + 33 
6*a^4*b^10*c^2 - 2240*a^5*b^8*c^3 + 8960*a^6*b^6*c^4 - 21504*a^7*b^4*c^5 + 
 28672*a^8*b^2*c^6)) - (x^(1/2)*(-(b^21 + b^6*(-(4*a*c - b^2)^15)^(1/2) + 
73728000*a^10*b*c^10 + 2085*a^2*b^17*c^2 - 36320*a^3*b^15*c^3 + 404160*a^4 
*b^13*c^4 - 3001344*a^5*b^11*c^5 + 15064576*a^6*b^9*c^6 - 50503680*a^7*b^7 
*c^7 + 108380160*a^8*b^5*c^8 - 134676480*a^9*b^3*c^9 - 2500*a^3*c^3*(-(4*a 
*c - b^2)^15)^(1/2) - 69*a*b^19*c + 525*a^2*b^2*c^2*(-(4*a*c - b^2)^15)^(1 
/2) - 39*a*b^4*c*(-(4*a*c - b^2)^15)^(1/2))/(8192*(a^5*b^24 + 16777216*a^1 
7*c^12 - 48*a^6*b^22*c + 1056*a^7*b^20*c^2 - 14080*a^8*b^18*c^3 + 126720*a 
^9*b^16*c^4 - 811008*a^10*b^14*c^5 + 3784704*a^11*b^12*c^6 - 12976128*a^12 
*b^10*c^7 + 32440320*a^13*b^8*c^8 - 57671680*a^14*b^6*c^9 + 69206016*a^15* 
b^4*c^10 - 50331648*a^16*b^2*c^11)))^(1/4)*(3355443200*a^10*c^13 - 4096*a* 
b^18*c^4 + 196608*a^2*b^16*c^5 - 4005888*a^3*b^14*c^6 + 45580288*a^4*b^12* 
c^7 - 320471040*a^5*b^10*c^8 + 1448607744*a^6*b^8*c^9 - 4217372672*a^7*b^6 
*c^10 + 7625244672*a^8*b^4*c^11 - 7751073792*a^9*b^2*c^12))/(16*(a^2*b^12 
+ 4096*a^8*c^6 - 24*a^3*b^10*c + 240*a^4*b^8*c^2 - 1280*a^5*b^6*c^3 + 3840 
*a^6*b^4*c^4 - 6144*a^7*b^2*c^5)))*(-(b^21 + b^6*(-(4*a*c - b^2)^15)^(1...